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Two new methods for estimation of parameters in

log-linear models are proposed and their properties

considered in this article. In-vart-cula, Conditions for

the existence of the new estimatorspowm1.eas-i7-h-dx-ed

t"i--n-- for 1ikv1iiblood % f&o4 .oiLo Ware derived,

and the new estimators are shown to possess appropriate

asymptotic properties KEY WCHDS: Minimum d estimation,

approximate minimum d estimation, existence, limiting

distribution.
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1. INTRODUCTION

Two new estimation methods for parameters in log-

linear models are introduced in this paper. One of these

particularly provides easy calculation and both are shown to

have appropriate asymptotic properties. Existence resultr

yield more easily verified conditions. The new methods are

designated as the minimun d and the approximate minimum d

method. We proceed with the development of needed notation

and background.

Following Haberman (1974), we regard a contingency

table as a k-vector n, n' = (n1, ... , nk), where ni denote!

the number of observations in cell i fro one of L

multinomial aistributions. Specifically, the setr

(ni: i e II), I = 1, ... , L, define independent multinomial

vectors,
(n : 6 1 M(N,, i > 0, a ^ " :I ,i" 1

where N = ni, and I I are disjoint andC_ , Ii r
exhaustive subsets of (1, ... , k1. Let n' = (ni 9., ik )

and p' (Pi' of*, Pk ) " where pi = nI/N for i 6 1ii
Corresponding to n and p, let 1' = (71 0 .. , k' where

10; ± = 1, ... , k, and log P'

(log p1 ' .. o, log pk ) . Finally, for a k-vector x, let

exp x' = fexp x1 , ... , exp X

The development of log-linear models was heralded

by Bartlett (1935) and by Boy and Kastenbaum (1956). They

define interactions in terms of constraints on products of

elements of n. Birch (1963) shows that these constraints



coincide with constraints on linear combinations of elementE

ox M. Nost generally, in a log-linear model, the parameters

y are constrained ty 1 0 1 0 1 m < k ; when m=O, there

are no linear constraints on y. The matrix B1 is assumed to

be an m x k matrix with orthonormal rows and to satisfy

BA= i (1.1)

xL'

where A is the k x L matrix given by

I I, i e If,

a = (1.2)
aO, otherwise.

We denote the parameter space of I by r(B1), Let

.= {y: I exp yi = 1, f = 1, .o,L}, (1.3)
- i e I1

ano

r (B) = 7: = 2 m' y 6 E k,"  (1.4)

Evidently

r o r) = r .hr B (1.5)

Since its rows are orthonormal, we may augment B1

to a k x k orthonormal matrix through addition oi adaitional

rows B2 and define

B =

-a = [e1' B2]" (1.6)

Reparameteization of y defines



1.7)

'S= P y, (1.7)

S= Bis. (1.8)

JAJ

Since e r (B1) implies Bl =M

.P=(P' 2 = ( m' . ,' (1.9)

(1.b) reduces to

2 '2 s, (1.1)- -

and (1.10) provides an alternative formulation ot the

general log-linear model.

There are many methods for estimation o: the

parameters of a log-linear model, the method of maxirr

likelihood being the test known. Estimation equations for

the general log-linear model are easily derived by the

methods of Birch (1963) or LaGrange (Apostol, 1957), and,

tor L=1, are given by

B 2 I - ex 7 = k-m , (1.11)

Generally, equations (1.11) require iterative solutiozi.

Conditions under which solutions may be obtained explicitly

are available (Andersen, 1974, Bishop, Feinberg, and

Holland, 1975).

Hfaberman (1973, 1974) and Andersen (1974) consider
the existence and uniqueness of the likelihood estimator.
Their results, in our notation, are summarized in the

umu
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following theorem.

he2La 1.1: If a maximum likelihood estimatcr

of T exists, it is unique, and satisfies (1.11).

Furthermore, any of the following conditions is necessary
and sufficient for the existence of a likelihood estimator:

i) there exists a vector 7 which satisfies (1.11),

ii) there exists a vector v such that B = n, 8nl.2! k-m"

+ Vi > 0, 21, ... , K, and

iii) there exists no vector v such that B =

0,, i = 1, ... , k, - k, and p v = 0.

Except in specific cases, the conditions o±

Theorem 1.1 are difficult to 4pply in practice.

The parameters of a log-linear model may be

estimated also by the principle of weighted least squares

(Grizzle, Starmer, and Koch, 1969, Koch ±.
1977).

Foth the weighted least squares and the maxitrun

likelihood approaches lead to estimators with good
asymptotic properties. In Section 2, we introduce the two
new estimation methods. Existence and uniqueness of the
estimators are discussed in Section 3 and, in Section 4, it

is shown that the new estimates also have good asymptotic

properties.
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2. NININUS 6 ESTIIATION

2.1 The Hinimum d lethod

Minimum d estimation is not really new, as 6 is

included in the class of functions studied by Heyman (1949),

Taylor (1953), and Ferguson (1958), the minimization of

which leads to B.A.N. estimators. It does, however, seem to

have special efficacy for log-linear models and leads to the

approximate minimum 6 estimation method discussed in

Section 2.2.

Let

k 2
d(; n) = X ni(log p1 - 1i) (2.1)

- ~ i=1
= (log p - j)'N (log p -),

where N is the aiagonal matrix with entries nl,..., nk* ,

for some i, n. is zero, the contribution to d(y; n) of the
i

th
i cell is taken to be zero. Further, we use

0 (log 0)q = 0 , (2.2)

since

lim n (log p = lim N p (lo9 p)q,
*i~n i- >0 p->O

= 01 1 C- I , A* =I, ., L.

The minimum 6 estimator 7 of I is defined to be that point

in r(B1 ) which minimizes d(2; n). Equivalently, and W

denote the corresponding estimators of p and a respectively.
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In analogy to the likelihood estimator, the

minimum d estimator satisfies a system of equation whenever

it exists. This system is given by the following theorem.

ThI2zam 2.1: If a minimum 6 estimator 7 of I

exists, then it satisfies the equations,

BIN(log p - 7) - Y(M)] = 0 (2.3)

--Om, (2.4)

and

exp = 1, 1 = 1, ... , L, (2.5)

i G I

where y(T) = ([y(), ., k(7)],

y (7) = (exp -Y) I ni(lg p. - 7.) (2.6)

fo i i 1

±or j If, 1 1 , ... , L.

Lr221: The theorem will follow from LaGrange'- '1

Theorem (Apostol, 1957, Th. 7-10; Williamson etjl., 1972,

p. 595) upon verification of the conditions of that theorem.

The set {: 0i < 0, i = 1, ... , k1 is associated with the

open set of the theorem. The constraint functions are

B

and

IJ I
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exp y. - 1, 1 = 1, ... ,

C I1

and they vanish on (B).

The matrix

S S

[B1, _e '  .. , e ]  ,(2 7)

where e (e l, . , elk

exp yi
= ex A'(2.8)

~0, Q i

is of full rank, since F1 is of full rank and it may br

proven that no row e is a linear combination of rows of I"

The proof follows by contradiction. Suppose that

a i,= ~ . l

where Pj

.th
denotes the j row of b.B Then we know that 4

1e ! = 1,

but

I 1 = ( -. B )1 = I a (B I1 k ) =0Ja:=1 l i=- j -

by (1.3) and the contradiction

L J-- .... .. -- ll.. ... , Ii i i i -- i iLI -
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is established.

Finally, since it is apparent that d and the

constraint functions have continuous partial derivatives

with respect to 1j, j = 1, ... , k, on

(1: y1 < 0, i = 1, ... , k, the conditions of LaGrange's

Theorem are met.

L
iv(-; n) = d(y; n) + O'Bi_ * Z + ( I exp - 1)

be the Lagrangian function for the minimization of d subject

to I er(B1). Then LaGrange's Theorem implies that, given

Se r(B1 ), values of the m-vector _', and A1, ... , b L exist

satisfying the equations,

d (1; n) im

d - -2nj(loq pj- + Z - iij

+ a I exr y, = O j 49 Ito I = lo .. L,

(2.9)

where b is the (i,j) element of B1 " Summation of the
lij

subset of equations (2.9) over j 1 I yields

-2 £ n.1(log p. -is) + Af 0, (2.10)
J I

the term involving blijs vanishing due to (1.1). With the

use of (2.10) and vector notation, (2.9) becomes

.,RooIm
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-2N(log p -) + B;! + 2y(j) 0,, (2.11)

where y(T) is given by (2.6). Premultiplication of (2.11)

by B yields-1

-2 B N(log p - T) + + 2 B 1(7) = Om' (2.12)

which implies

= 2 BN(log p - 7) - 2 P. y(y). (2.13)

Substitution o± (2.13) into (2.11) yields

[I - B 1 F ][N(log p - 7) - y(7)] 0., (2.1')

ana, with premultiplication Ly B = 1(2.14) reduces to
- 2

B 2 [N(log p - 7) - Y(M)] = 0 k-m* (2.1:)

Thus, 7 must satisfy (2.3), and the constraint

equations (2.4) and (2.5). This completes the proof.

The system (2.3) - (2.5) contains k + L equations.

We can show that L equations of (2.3) are redundant.

Without loss of generality, we take the first L rows of B,

as proportional to the rows of A , where A is given by

(1.2). Then,

I
&1
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A N(log p - y- (y)

Z ni(log p. - 1)1(1 - exp yi)
i 1 L 1 1 1 C 11

12L Z n i(109 P i - i 1 - : exp
i i L  i L

by (2.5). Computation of may be effected through solution

of (2.4), (2.5), and the last (k - m - L) equations of

(2.3).

2.2 The Approximate Minimum d Method

Calculation of the minimum d estimator ecessarily

involves solution of equations (2.4), (2.5), and the last

(k - m - L) equations of (2.3). As this system is

nonlinear, its solution may prove to be a formidable task
indeed. In this section, we develop an approximation to th-

minimum d estimator, one which is examined as a new

estimator. The method is of interest because th,
approximation, unlike the minimum d estimator, is relatively

easy to compute, and, like the minimum 6 estimator, has good

asymptotic properties. Furthermore, an approximate mininu'

8 estimator always exists.

As noted, minimization of d over riB1 ) may prove

to be a difficult problem. A somewhat simpler problem is

the minimization of 6 over r(B,), and this is the idea

behind the approximate method.

I,

_ 2ti
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Let a denote the approximate minimur d estimator.

Roughly, to calculate w ye first obtain the "projection"

of log p in r (B ) through the minimization of d(y; n) over

rM(B ) Let j denote the result of this minimization. The

approximate minimum d estimator Ta is the "projection" of T

in r obtained through minimization of d*(1; Y)

k 2 -

I (exp Y. - exp yi) /(exp Y over r (see Figure A).
i=1

The description in the preceding paragraph ir

oversimplified in that the existence and uniqueness of

y and Ia are tacitly assumed. In the next section, we sthow

that such points do exist, though they need not be unique.

More formally, let

.{: y minimizes d over r (B1)), (2.16)

and

c17) A' exp y, (2.17)

where A is given by (1.2). An approximate minimum d

estimator of I is given by

= y - Alog cO))., (2.18)

• .- .'. .. . ... . . . "' :! a-
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where flog c(7)J' = log cI(i), ... , log cL(f)I, and 4 6 r.

We denote the set of points given by (2.18) as r and leta,

! and a denote the corresponding estimators of n and A

respectively.

It is clear that "projection" of log p

into r( (i ) lead to the set r. In the following lemra,

we prove that the "projection" of e r in r obtained
f~ WS

through minimization of d*(y; i) over rS, is the point Ta

given by (2.18). We then prove that any element of ra  lies

in r(BS), as depicted in Figure A.

1&n 2.2: The minimum of
k
I(; v) = Z (exp Yi - exp Yi) /exp ;i over rS  is

i=1
attained at 7a, where 7a is given by (2.16) for any vector

-Y r.

EL22L: let 10 be any element of rS. There exists

a k-vector e such that

exp Oi e + exp aI.

Since and!a are elements of r it may be shown that

I e = 0, C = 1, ... , L. (2.19)~ e 1
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To proye the lemma, we show that

*(O 1 *(a; _). Note that

k -2
d*(O -)_ (e + exp ya - exp Yi) /exp VI

1=1

k) e2/exp

- =1

L
2 eli - exp 7a /exp YA

f=1 1 ai 1

k
= d*(a; Q + I eiexp i

i=1 i

L -

-2 1 {1 - 1c(y)J I 7 e i:I i e I

by (2.17) and (2.18). Finally, by (2.19), we have

k

d'(y 0; Y) = '(T; Y) +  I e1/exp Vi- " i=1

d'(V. ;V)

and the proof is complete.

. u 2.1: Any Va e rd lies in r(B 1).

2r2: By (2.17) and (2.18) a lies in r To
sa

show a lies in r (B 1, we note that
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!1a 1= y- B1Aflog c(T)J,

by (1.1) and (2.16).

3. EXISTENCE AND UNIQUENESS OF THE INIINUN 6 AND

APPROZINATE NINIBUR 6 ESTIIATORS

3.1 Introduction

When each cell of the contingency table contains

at least one observation, likelihood, minimum d, and

approximate minimum d estimators may be shown to exist and

to be unique. Problems may arise, however, when some cells

are empty. In this section, we show that an approximate

minimum d estimator always exists, and give a usable,

necessary and sufficient condition for the existence of the

minimum d estimator. The minimum d estimator is shown to be

unique whenever it exists. The approximate minimum d

estimator need not be unique; a necessary and sufficient

condition for its uniqueness is given.

Throughout this section, we shall assume that B

has less than k - L rows, for when B I has k - L rows, r(B1)

contains only a single point, and likelihood, minimum 6 and

approximate minimum d estimators must exist and be unique.

We make use of the following notation and

definition in this section. In analogy to r(B1), for an L-

vector e, e > 0, 1 * 1, ... , L, let
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r(B1,) = (: B = 0, 1 exp 1= = 1, ... , L).
. .e I

(3.1)

In this notation r(B1) = r 1' 1L)"

00

Z J .I: A sequence of k-vectors (xr rl

is said to possess the star property if

i) {X rjr=, either converges or diverges properly, j = 1,

k, and

ii) there exists j such that lim sup x - 0
r rj

3.2 Uniqueness of the Minimum d Estimator

2i-1tr .i: If a minimum ox d over r(B1) Lxists,

it is unique.

To prove Theorem 3.1, we require a sequence of

three lemmas:

I~az 1 -.I: let a >0,f = 1,...,L,ni>Oi=1,...,k,

and q be a positive integer. The function,

k
( n I n (log i- ,)Q (3.2)

i=1

attains a minimum over r(B1 , e),
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.L~eaa 1.2: Let 0 < a 1. For any f, I = 1,

€ (-; n) I nilog Pi - Yi) 2-9 log Of

(3.3)

for 7  r(f :) = exp i= a,),

and

and -. (:) Let e FMB1)n rs(a )I with

0 < at 1. Then

d (y; n) = ( pi Yi )2

- - i C I

with strict inequality if < 1.

(ii) If y e r(B a), 0 < 1t 1, 1 = 1, L.., L, with a I

for some 1, then

d(7; n) > d(j - A log a; n). (3.4)

straightforward, and so are omitted.

The roos ofeac lema, nd hen f Teore 3. ar
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3.3 Existence and Uniqueness of the Approximate

liaimum 8 Estimator

The main results of this section are that an

approximate minimum d estimator always exists, and that it

is unique if and only if (B2 ! !2 ') is nonsingular. These

results follow from Lemma 3.4, which describes the nature of
r in (2.16), and is stated without proof.

Luu 1.!i: The set r is a nonempty, affine set of
dimension k - a - rk H and is given by

JI I B ) N o (3.4)

- - -2- !2' - ! po

+{- !2N (E N 22') z>] z C Ek-m,

where the notation is such that A is a generalized inverse

o .A. If (B2 N -B2*) is of full rank, then F is a singleton

set. Furthermore, if ;ET, c1() . 1 , where c,(;) is the

fth element of c(7) given by (2.17).

It2I M 1.2: The set ra is nonempty. Furthermore
ra is a singleton set if and only if rk(B N B ') =k-ma"2 "- "

£LggL: The theorem follows immediately from Lemma

3.4 when it is noted that each element Y of F leads to a

distinct £ ra , through use of (2.18).

aIi
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3.4 Existenc* of the Minimum d Estimator

The existence of the minimum 6 estimator depends

upon the space r , which was defined in Section 2 and whose

properties were noted in the previous section. Let

* = {: vYf, z expv i = c1 , I = 1, ... , L, (3.5)
- - iEI 1

where

C =nf (c(y)3 Er iEI exp i = 1, ...,L, (3.6)

In this subsection we show that r* is either an
empty or singleton set, and that a minimum d estimator

exists if and only if r* is a singleton set.

Qmmi J.J: If F* is not empty, then it is a

single point.

22: The proof is by contradiction. Suppos-

that i and 12 are both contained in r and that ii O i2"

Since r is an affine set (Lemma 3.4), 13 Vi + .i e F. I
Furthermore, since the exponential is a convex function,

there exists I for which

2
C= : exp 7j, > 7 exp (3.7)j= i e I e 1 71

But (3.7) contradicts the fact that
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c = inf 1 exp 1= exp y = exp I2i'

and the lemma is proved.

Let

r 1  ) = ' B 0 , exp Y, j al' I = 1, ... , L).
. . . .. . mi E I1

(3.8)

The following is a technical result needed to prove the main

result of this article.

L12k J.A: Suppose that d has a unique minimu.

over r (B1, .) Then, if (Yr) 1 is any sequence of

points in rc(B 1 , !) with the star-property,

limr inf d(y*; n) *

We now show that the nonemptiness of r i

necessary and sufficient for the existence of a minimum a

estimator.

Izgrpa J.A: A minimum d estimator exists if and

only if T* is nonempty.

£r22&: Suppose that r* contains the point j*.

Then j minimizes d over B c) and is unique by LemmaThen~~~ ~~ -1mniie 0oer I
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3.5. If (y is a sequence of points in r(B1) with the

star property, then, by Lemma 3.6,

limr inf (v ;n) = a (3.9)r -r -

Note that a = -log(A A' k) e r(B ), and that 6(a ; n) is

finite. This, the fact that d is continuous, and (3.9)

imply that a minimum of 6 over r(B1) exists. This proves

sufficiency.

Now suppose that r* is empty, ana let (I 3=c

be a sequence of points in r such that

lim I exp y = cf, f = 1, oo., Le (3.10)
r i G I f

From the continuity of the exponential function and the

definition of c1 in (3.6), such a sequence must exist and,

since r* is empty, must possess the star property.
4

Let

r*= - A log -(Cr)' r = 1, 2, ... , (3.11)

and note that Y * r(B1 ), r = 1, 2, .... To prove

necessity, we need to show that
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limrin d(r 'n) < c • (3.12)

To prove (3.12), we note that

L
d(y r n) 6( r; n) + I (log C r)2- f=1 rl I 1l

L
+ 1 2 log crf I ni(log p- )

(3.13)

whereC = I exp If=1,.0.,L.

Since

ni(log pi -

I n6i (log p1 - 7i(i C I:19 flgpi-,ij >11

+ ni (log p. - Yj)
(i C I :1log pi-yil<1)

ni(log Pi {i ) 2 +
(1 6 1/:Ilog p -tI Z1)

I n (log pi - Y) 2  + Nip = 1, .. , L,

(3.13) implies that
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L2
6(j r; n) d(-t; n) + I N (log c r)2- ... f=1 r

+ 2 log C rd(0; n) 4 NJ, (3.14)

where

C max C 1 . (3.15)
r

Note that (7; rn), N, and N ,  = , ... , L do not depend

on r, and that c 1 and C tend to finite limits by (3.10).
r r

Thus

limr inf d(r *; n) limr inf{d(y r; n)

L 2
+ I DIk(log Cr + 2 log C r[6(Y; n) + N]}

£=i

which establishes (3.12).

We have exhibited a sequence of vectors (T *. r l

~r r=1

in r( 1), and hence in r (B1, L)" which violates the

conclusioi of Lemma 3.6, and hence implies that no unique

minimum of 6 over rc(Bi', l ) exists. Thus, either no

minimum exists or the minimum is not unique.

Suppose two distinct vectors I and 12 which

minimize 6 over r (B1  IL) exist. By part (ii) of Lemma

-- ~~~~ ~~ -1, -L ' .. .. ..
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3.3, 1 1and 12 must lie in r(B ). But this contradicts

Theorem 3.1, which states that, if a minimum of d over r( 1 )

exists it is unique. Thus no minimum exists. This proves

necessity, and the proof of the theorem is complete.

The following corollary is useful and follows from

Theorems 3.2 and 3.4.

P.L21AX . If ( 2 N 2  ) is of rank k-m,

then a minimum d estimator exists.

4. ASUPTOTIC PROPERTIES

As the sample sizes become large, since n > 0,a
the probability that each cell in the contingency table

contains at least one observation tends to one. Therefore,

the probability that the defined estimators exist and are

unique tends to one by Corollary 3.4 and Theorem 3.2. Thus

we assume that the various estimators exist and are unique

and consider their asymptotic properties. Further, we

assume that there exists an L-vector e, e > 0, 1 = 1, ,

L, such that

lim Nt/N =

where N denotes the sample size for populationI L
, C = 1, ..o, L, and N = I N1 denotes total sample size.

1=1

Two main results are given in this section.

! t
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The first result is Theorem 4.1. Two sequences of

random k-vectors, (Y } and ( *N=I ' are said to be a -
N.t N=1 .N N=I N-

limit equivalent in probability (aN - l.e.p.) if

* p
-(Y -> 0 " (4.1)

1422Km R.1: Any pair of the maximum likelihood

estimator y, the minimum d estimator , the approximation

, and - are 7N- l.e. .
a

2£2: We prove that I and I are /N- l.e.r. te

give an indication of the method of proof of the various

pairwise results.

Likelihood estimation is reviewed in Section 1.

As a slight generalization of (1.11), we have

~ = 
2m (14.2)

and

2E (p - ex .) = 0-m (4.3)

where E denotes the diagonal matrix whose it h element equals

e,i ,=1, ... I. From the definition of . in Section

Ir
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2, the minimization procedure yields

B = 0 (4.4)

and

B !(log p - 0. (

Replacement, in (4.3), of exp i = 1, ... , .K,

by its expansion about log pi yielcs

P '(exp -log 2
.2 " Ivi - pi pi(i - lo i 2 1

(7(o- log )2

2 - o - 2...2 - 2 I'
-- k

whr 0o (4.6)

where 1 is the diagonal matrix with elements exp V,, ... ,

exp * , and V = .. k is such that V lies between

log pi and 5i, i = 1, ... , k.

1L

-! ~ ~ ~~~~~ . . ..... "*"-- " ,- i, T '
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Subtraction of N times the expression in (4.6)

from (4.5), and subtraction of (4.4) from (4.2) yield

73( ) =0 (4.7)

and

- log pl)
2

+ 1N 4B
(B2 . - ! N2 -' -

2

Tk - loca k)2

Slutsky's Theorem (Serfling, 1980, p. 19) implies that

r
{N-N/2 e. N(? - *) - .2 9) - -> ok, .

where nl denotes the diagonal matrix with elements

P
nil Goof Tk' since ni Pi Ni' i C If, and P, -> ni"

To complete proof of this part of the theorem, it

remains to show that

iOW
_ _ _ __ _ _ __ _ _ _ _ _ _ _ _
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-log p1 ) 
2

P
B 2B E w*-0 *- (4.10)

2

(1- log p)

pp

Since and log p are consistent estimators of y, w -> 1,

and, since A'(9i - y.) and /!(log pi - Yi) have limiting

distributions, Slutsky's Theorem determines that

og pl ) 2

p

vig• ->0. (4.11)

(I k -log P k) 2

Finally, (4.7)-(4.10) imply that

EI

i"~
Y.. . . . (4..12)

and, since is of full rank,
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P

NO - - ) -> ok,

and the proof is complete.

The second theorem of this section follows.

P

d(- y n) - ( *; n) -> 0, ('.13)

where the iunction

2 L 2
X (y; n) E £ N1 (Pi - exp vi) /exp ji

= " f=l I f

is the well-known Pearson function, and Y denotes any of

the likelihood, minimum d, or approximate minimum d

estimators.

This result is proven by'expansion ot exp yi in

the numerator o±X2 (7 ; n) about log pi,

Theorem 4.2 allows us to test the null hypothesis,
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H ( y: 0H° [lJ "m+m

* *

where B is an m x k matrix with orthonormal rows such that1

B A0 , against the alternative hypothesis,
m xL

Ha.1 _ = 0m

Define T = d(yHo; n) - d(y a; n),
-o -Ha -

where I and ya are estimates of I under Ho and H
E-_H 0 a

respectively. The limiting distribution of test statistics
based on X , and, in view of Theorem 4.2, of T are given by

Mitra (1958) and Diamond (1963) for various m and "local

alternatives". In particular, under H., T has a limiting

chi-squared distribution with m* degrees of freedom.

5. CONCLUDING RENARKS

The emphasis in this paper has been on the basic

properties of the minimum 6 and approximate minimum 6

estimators. Their existence properties have been considered

and they have been shown to have large sample properties

equivalent to those of likelihood estimators. The minimum 6

and approximate minimum 6 methods lead to asymptotic chi-

squared tests analogous to those of the Pearson goodness of

fit statistic.
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A second manuscript will deal with the application

of log-linear models and the new estimators to the

classification problem of Martin and Bradley (1972). Thc

existence results and test procedures will be illustrated

there, and extensions to the problem considered by Partin

and Bradley (1972) given.

fi
I
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